次元削減手法の比較検証:定量的・定性的評価によるPCA、t-SNE、UMAPの特徴分析
はじめに この記事では、機械学習や統計分析において重要な、高次元データの可視化および分析のための次元削減手法について解説します。特に、PCA(主成分分析)、t-SNE、UMAPという代表的な3つの手法に焦点を当て、それぞ...
はじめに この記事では、機械学習や統計分析において重要な、高次元データの可視化および分析のための次元削減手法について解説します。特に、PCA(主成分分析)、t-SNE、UMAPという代表的な3つの手法に焦点を当て、それぞ...
はじめに 本記事では、プライバシーを保護しながら実用的な合成データを生成するための手法を、具体的な実践を通じて解説します。特に、合成データ生成ライブラリ synthcity に実装されているADS-GAN(Adversa...
はじめに モンテカルロ法は、確率的なサンプリングを用いて数値積分や期待値計算を行う強力な手法です。しかし、次元が増加するにつれて必要なサンプル数が指数関数的に増加する「次元の呪い」という問題に直面します。この記事では、次...
はじめに 金融市場では、複数の資産価格が互いにどのように影響しあうかを理解することが重要です。例えば、ある株が上がるとき、別の株も一緒に上がるのか、それとも下がるのか。このような関係性を分析することで、リスク管理や投資戦...
はじめに 機械学習モデルの運用において、「なぜこの予測結果になったのか?」という問いに答えることは、ビジネス上の意思決定やモデルの改善に不可欠です。特に、「もしこの特徴量がこうだったら、予測結果はどう変わるのか?」という...
はじめに 近年、機械学習モデルの訓練やデータ分析のために、元データの特徴を保ちつつプライバシーを保護する「合成データ」の活用が進んでいます。しかし、生成されたデータが本当に安全なのか、どのように評価すればよいのでしょうか...
はじめに 「相関は因果関係を意味しない」という言葉はよく知られていますが、実際に因果関係をどのように推論すればよいのでしょうか。本記事では、因果推論の基本概念をわかりやすく解説し、Pythonを用いた実践的な例を通じて、...
はじめに この記事では、Pythonを用いて任意の確率密度関数に従う乱数を生成する方法について解説します。特に、三角形内部に均一に乱数を配置する問題を例に、具体的なコードと数式を用いて丁寧に説明します。累積分布関数とその...
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに 機械学習モデルの評価において、交差検証(Cross-Validation)は不可欠です。しかし、時系列データに対して通常のK-分割交差検証(K-Fold Cross-Validation)を適用すると、未来の情...
はじめに 機械学習モデルの説明可能性(Explainable AI, XAI)は、モデルの意思決定プロセスを理解し、ステークホルダーとの信頼関係を構築する上で重要な役割を果たしています。本記事では、代表的な2つの手法であ...
はじめに 本記事では、材料の特性評価における流体力学シミュレーションの応用について解説します。X線CTなどで取得したデータをもとに、デジタル空間上で流体の透過性をシミュレーションする方法を紹介し、その理論的背景、計算手順...