モンテカルロ法における次元の呪いの緩和方法:重点サンプリングによる効率化
はじめに モンテカルロ法は、確率的なサンプリングを用いて数値積分や期待値計算を行う強力な手法です。しかし、次元が増加するにつれて必要なサンプル数が指数関数的に増加する「次元の呪い」という問題に直面します。この記事では、次...
はじめに モンテカルロ法は、確率的なサンプリングを用いて数値積分や期待値計算を行う強力な手法です。しかし、次元が増加するにつれて必要なサンプル数が指数関数的に増加する「次元の呪い」という問題に直面します。この記事では、次...
はじめに 混合整数計画法(Mixed Integer Programming; MIP)は、数理最適化問題の一種であり、一部の変数に整数制約を課した最適化問題を指します。線形計画問題(Linear Programming...
はじめに 近年、グラフニューラルネットワーク(GNN)は、グラフ構造を持つデータの分析において大きな注目を集めています。本記事では、GNNを用いた異常検知の基本的な実装方法について、架空の取引ネットワークデータを例に解説...
はじめに 金融市場では、複数の資産価格が互いにどのように影響しあうかを理解することが重要です。例えば、ある株が上がるとき、別の株も一緒に上がるのか、それとも下がるのか。このような関係性を分析することで、リスク管理や投資戦...
はじめに 本記事では、時系列データ予測における深層学習モデルの代表格であるLSTM (Long Short-Term Memory) とTransformerを比較します。これらのモデルは、ビジネスにおける様々な課題、例...
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに 機械学習モデルの評価において、交差検証(Cross-Validation)は不可欠です。しかし、時系列データに対して通常のK-分割交差検証(K-Fold Cross-Validation)を適用すると、未来の情...
はじめに 数値積分は、関数を解析的に積分することが難しい場合や、データ点からの数値的な積分が必要な場合に役立つ手法です。関数 f(x) の定積分 \int_a^b f(x)dx を近似的に計算するために使用されます。 こ...
はじめに 機械学習モデルの説明可能性(Explainable AI, XAI)は、モデルの意思決定プロセスを理解し、ステークホルダーとの信頼関係を構築する上で重要な役割を果たしています。本記事では、代表的な2つの手法であ...
はじめに 最適化問題は、科学、工学、経済学など、さまざまな分野で重要な役割を果たしています。多くの最適化問題は複雑であり、局所的最適解に陥りやすいという課題があります。本記事では、代表的な2つの最適化アルゴリズム、勾配降...
はじめに この記事では、あるコスト関数を最小化するための3次元回転の最適化について、リー代数の考え方を用いて理論的な背景を解説し、Pythonで実装を行います。詳細については、書籍「3次元回転(金谷健一著)」が参考になり...
はじめに 巡回セールスマン問題(TSP)は、組合せ最適化の代表的な問題です。本記事では、シミュレーテッドアニーリング(SA)を用いてTSPを解く方法を解説します。SAは、金属の焼きなましを模倣したアルゴリズムで、実装が容...