Scipyによる最適化計算と自動微分
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに 統計学には、大きく分けて頻度主義統計学とベイズ統計学の2つのアプローチが存在します。これらは確率の解釈と、それに基づく統計的推論の方法において根本的に異なります。本記事では、コイン投げという単純な例を通じて、こ...
はじめに 数値積分は、関数を解析的に積分することが難しい場合や、データ点からの数値的な積分が必要な場合に役立つ手法です。関数 f(x) の定積分 \int_a^b f(x)dx を近似的に計算するために使用されます。 こ...
はじめに 機械学習モデルの運用において、「なぜこの予測結果になったのか?」という問いに答えることは、ビジネス上の意思決定やモデルの改善に不可欠です。特に、「もしこの特徴量がこうだったら、予測結果はどう変わるのか?」という...
はじめに 本記事では、時系列データ予測における深層学習モデルの代表格であるLSTM (Long Short-Term Memory) とTransformerを比較します。これらのモデルは、ビジネスにおける様々な課題、例...
はじめに 近年、グラフニューラルネットワーク(GNN)は、グラフ構造を持つデータの分析において大きな注目を集めています。本記事では、GNNを用いた異常検知の基本的な実装方法について、架空の取引ネットワークデータを例に解説...
はじめに 巡回セールスマン問題(TSP)は、組合せ最適化の代表的な問題です。本記事では、シミュレーテッドアニーリング(SA)を用いてTSPを解く方法を解説します。SAは、金属の焼きなましを模倣したアルゴリズムで、実装が容...
はじめに モンテカルロ法は、確率的なサンプリングを用いて数値積分や期待値計算を行う強力な手法です。しかし、次元が増加するにつれて必要なサンプル数が指数関数的に増加する「次元の呪い」という問題に直面します。この記事では、次...
はじめに この記事では、機械学習や統計分析において重要な、高次元データの可視化および分析のための次元削減手法について解説します。特に、PCA(主成分分析)、t-SNE、UMAPという代表的な3つの手法に焦点を当て、それぞ...
はじめに この記事では、あるコスト関数を最小化するための3次元回転の最適化について、リー代数の考え方を用いて理論的な背景を解説し、Pythonで実装を行います。詳細については、書籍「3次元回転(金谷健一著)」が参考になり...
はじめに この記事では、CTスキャンなどのボリュームデータから、セグメンテーションされたラベルデータの表面積を正確に計算するための「クロフトンの公式」について解説します。3次元データの表面積計算は、医用画像処理をはじめと...
はじめに 金融機関が保有する信用情報は、与信モデルの高度化や新たな金融サービスの開発において極めて価値の高い資産です。しかし、その機微性の高さから、組織を横断したデータ共有や共同研究は困難を極めます。このジレンマを解決す...