コンテンツへスキップ
Digital Reactor LLC
Digital Reactor LLC
  • ホーム
  • 技術ブログ
  • 会社情報
  • お問い合わせ
  • ホーム
  • 技術ブログ
  • 会社情報
  • お問い合わせ

カテゴリー: その他

因果推論入門:基本概念とPythonによる実践

2025年3月4日 by 望月 優輝 / Yuki Mochizuki

はじめに 「相関は因果関係を意味しない」という言葉はよく知られていますが、実際に因果関係をどのように推論すればよいのでしょうか。本記事では、因果推論の基本概念をわかりやすく解説し、Pythonを用いた実践的な例を通じて、...

クロフトンの公式でボリュームデータの表面積を計算する

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに この記事では、CTスキャンなどのボリュームデータから、セグメンテーションされたラベルデータの表面積を正確に計算するための「クロフトンの公式」について解説します。3次元データの表面積計算は、医用画像処理をはじめと...

準モンテカルロ法で使用される低不一致列の解説、次元数による有効性の違い

2025年3月13日 by 望月 優輝 / Yuki Mochizuki

はじめに 本記事では、モンテカルロ法の改良版である準モンテカルロ法について解説します。モンテカルロ法は乱数を用いて数値計算や積分を行う手法ですが、準モンテカルロ法は「低不一致列」と呼ばれる特殊な数列を用いることで、より高...

数値積分の実装と比較:台形法からガウス求積法まで

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 数値積分は、関数を解析的に積分することが難しい場合や、データ点からの数値的な積分が必要な場合に役立つ手法です。関数 f(x) の定積分 \int_a^b f(x)dx を近似的に計算するために使用されます。 こ...

ADS-GANによる合成データ生成、分布・ユーティリティ・プライバシーの評価

2025年11月4日 by 望月 優輝 / Yuki Mochizuki

はじめに 本記事では、プライバシーを保護しながら実用的な合成データを生成するための手法を、具体的な実践を通じて解説します。特に、合成データ生成ライブラリ synthcity に実装されているADS-GAN(Adversa...

確率的最適化アルゴリズムの実装と比較:遺伝的アルゴリズムと勾配降下法

2025年3月4日 by 望月 優輝 / Yuki Mochizuki

はじめに 最適化問題は、科学、工学、経済学など、さまざまな分野で重要な役割を果たしています。多くの最適化問題は複雑であり、局所的最適解に陥りやすいという課題があります。本記事では、代表的な2つの最適化アルゴリズム、勾配降...

時系列データの予測:LSTMとTransformerの性能比較

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 本記事では、時系列データ予測における深層学習モデルの代表格であるLSTM (Long Short-Term Memory) とTransformerを比較します。これらのモデルは、ビジネスにおける様々な課題、例...

混合整数計画法(MIP)の理論と実践

2025年2月26日 by 望月 優輝 / Yuki Mochizuki

はじめに 混合整数計画法(Mixed Integer Programming; MIP)は、数理最適化問題の一種であり、一部の変数に整数制約を課した最適化問題を指します。線形計画問題(Linear Programming...

Graph Neural Networksを用いた異常検知入門

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 近年、グラフニューラルネットワーク(GNN)は、グラフ構造を持つデータの分析において大きな注目を集めています。本記事では、GNNを用いた異常検知の基本的な実装方法について、架空の取引ネットワークデータを例に解説...

画像の特徴点検出アルゴリズム比較実験

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 本記事では、画像処理における特徴点検出について解説します。特徴点検出は、画像内で際立った特徴を持つ点を特定する技術であり、画像マッチング、物体認識、画像位置合わせなど、様々な応用分野で重要な役割を果たします。 ...

反実仮想サンプルの生成と使い方

2025年3月13日 by 望月 優輝 / Yuki Mochizuki

はじめに 機械学習モデルの運用において、「なぜこの予測結果になったのか?」という問いに答えることは、ビジネス上の意思決定やモデルの改善に不可欠です。特に、「もしこの特徴量がこうだったら、予測結果はどう変わるのか?」という...

データの性質で選ぶナイーブベイズのサブタイプ

2025年7月3日 by 望月 優輝 / Yuki Mochizuki

はじめに 機械学習ライブラリScikit-learnには、ナイーブベイズ分類器として4つの異なるクラスが用意されています。これらはそれぞれ異なるデータ特性を想定しており、タスクに応じて適切に使い分けることが重要です。しか...

投稿のページ送り

1 2 3 次へ »

  • ホーム
  • 技術ブログ
  • 会社情報
  • お問い合わせ
© 2025 Digital Reactor LLC
Powered by WordPress | Powered by BusinessPress