球面上に均一にランダム分布する点群を生成する
はじめに この記事では、球面上に均一に点を配置する2つの方法について解説します。具体的には、乱数を用いる方法と、黄金比を用いる方法を紹介します。これらの手法は、シミュレーションの初期値設定や3Dグラフィックスにおけるオブ...
はじめに この記事では、球面上に均一に点を配置する2つの方法について解説します。具体的には、乱数を用いる方法と、黄金比を用いる方法を紹介します。これらの手法は、シミュレーションの初期値設定や3Dグラフィックスにおけるオブ...
はじめに カメラキャリブレーションは、コンピュータビジョンにおいて基礎的かつ重要な技術です。実世界の3次元空間をカメラで撮影し2次元画像として取得する過程で、カメラレンズの歪みやカメラの位置・姿勢などの情報を正確に把握す...
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに 数値積分は、関数を解析的に積分することが難しい場合や、データ点からの数値的な積分が必要な場合に役立つ手法です。関数 f(x) の定積分 \int_a^b f(x)dx を近似的に計算するために使用されます。 こ...
はじめに この記事では、Pythonを用いて任意の確率密度関数に従う乱数を生成する方法について解説します。特に、三角形内部に均一に乱数を配置する問題を例に、具体的なコードと数式を用いて丁寧に説明します。累積分布関数とその...
はじめに 最適化問題は、科学、工学、経済学など、さまざまな分野で重要な役割を果たしています。多くの最適化問題は複雑であり、局所的最適解に陥りやすいという課題があります。本記事では、代表的な2つの最適化アルゴリズム、勾配降...
はじめに 本記事では、画像処理における特徴点検出について解説します。特徴点検出は、画像内で際立った特徴を持つ点を特定する技術であり、画像マッチング、物体認識、画像位置合わせなど、様々な応用分野で重要な役割を果たします。 ...
はじめに 金融リスク管理において、バリュー・アット・リスク(VaR)は、ポートフォリオが一定期間内に被る可能性のある最大損失額を推定する重要な指標です。VaRの計算方法には、ヒストリカル法とモンテカルロ法の2つが主要な手...
はじめに 3次元データの処理は、コンピュータビジョン、ロボティクス、拡張現実(AR)/仮想現実(VR)といった分野で不可欠な技術です。これらの分野では、現実世界の3次元情報を取得・解析し、それに基づいてシステムを制御した...
はじめに 「相関は因果関係を意味しない」という言葉はよく知られていますが、実際に因果関係をどのように推論すればよいのでしょうか。本記事では、因果推論の基本概念をわかりやすく解説し、Pythonを用いた実践的な例を通じて、...
はじめに この記事では、あるコスト関数を最小化するための3次元回転の最適化について、リー代数の考え方を用いて理論的な背景を解説し、Pythonで実装を行います。詳細については、書籍「3次元回転(金谷健一著)」が参考になり...
はじめに 金融市場では、複数の資産価格が互いにどのように影響しあうかを理解することが重要です。例えば、ある株が上がるとき、別の株も一緒に上がるのか、それとも下がるのか。このような関係性を分析することで、リスク管理や投資戦...