合成データのプライバシー品質評価指標
はじめに 近年、機械学習モデルの訓練やデータ分析のために、元データの特徴を保ちつつプライバシーを保護する「合成データ」の活用が進んでいます。しかし、生成されたデータが本当に安全なのか、どのように評価すればよいのでしょうか...
はじめに 近年、機械学習モデルの訓練やデータ分析のために、元データの特徴を保ちつつプライバシーを保護する「合成データ」の活用が進んでいます。しかし、生成されたデータが本当に安全なのか、どのように評価すればよいのでしょうか...
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに 3次元データの処理は、コンピュータビジョン、ロボティクス、拡張現実(AR)/仮想現実(VR)といった分野で不可欠な技術です。これらの分野では、現実世界の3次元情報を取得・解析し、それに基づいてシステムを制御した...
はじめに モンテカルロ法は、確率的なサンプリングを用いて数値積分や期待値計算を行う強力な手法です。しかし、次元が増加するにつれて必要なサンプル数が指数関数的に増加する「次元の呪い」という問題に直面します。この記事では、次...
はじめに 本記事では、プライバシーを保護しながら実用的な合成データを生成するための手法を、具体的な実践を通じて解説します。特に、合成データ生成ライブラリ synthcity に実装されているADS-GAN(Adversa...
はじめに この記事では、CTスキャンなどのボリュームデータから、セグメンテーションされたラベルデータの表面積を正確に計算するための「クロフトンの公式」について解説します。3次元データの表面積計算は、医用画像処理をはじめと...
はじめに 本記事では、画像処理における特徴点検出について解説します。特徴点検出は、画像内で際立った特徴を持つ点を特定する技術であり、画像マッチング、物体認識、画像位置合わせなど、様々な応用分野で重要な役割を果たします。 ...
はじめに 本記事では、材料の特性評価における流体力学シミュレーションの応用について解説します。X線CTなどで取得したデータをもとに、デジタル空間上で流体の透過性をシミュレーションする方法を紹介し、その理論的背景、計算手順...
はじめに 巡回セールスマン問題(TSP)は、組合せ最適化の代表的な問題です。本記事では、シミュレーテッドアニーリング(SA)を用いてTSPを解く方法を解説します。SAは、金属の焼きなましを模倣したアルゴリズムで、実装が容...
はじめに 機械学習ライブラリScikit-learnには、ナイーブベイズ分類器として4つの異なるクラスが用意されています。これらはそれぞれ異なるデータ特性を想定しており、タスクに応じて適切に使い分けることが重要です。しか...
はじめに 混合整数計画法(Mixed Integer Programming; MIP)は、数理最適化問題の一種であり、一部の変数に整数制約を課した最適化問題を指します。線形計画問題(Linear Programming...
はじめに 機械学習モデルの運用において、「なぜこの予測結果になったのか?」という問いに答えることは、ビジネス上の意思決定やモデルの改善に不可欠です。特に、「もしこの特徴量がこうだったら、予測結果はどう変わるのか?」という...