3次元回転の最適化計算
はじめに この記事では、あるコスト関数を最小化するための3次元回転の最適化について、リー代数の考え方を用いて理論的な背景を解説し、Pythonで実装を行います。詳細については、書籍「3次元回転(金谷健一著)」が参考になり...
はじめに この記事では、あるコスト関数を最小化するための3次元回転の最適化について、リー代数の考え方を用いて理論的な背景を解説し、Pythonで実装を行います。詳細については、書籍「3次元回転(金谷健一著)」が参考になり...
はじめに この記事では、PythonのScipyライブラリを用いて最適化問題を解く方法について解説します。Scipyのoptimizationパッケージには多様な最適化アルゴリズムが実装されており、問題の特性に応じて最適...
はじめに カメラキャリブレーションは、コンピュータビジョンにおいて基礎的かつ重要な技術です。実世界の3次元空間をカメラで撮影し2次元画像として取得する過程で、カメラレンズの歪みやカメラの位置・姿勢などの情報を正確に把握す...
はじめに 混合整数計画法(Mixed Integer Programming; MIP)は、数理最適化問題の一種であり、一部の変数に整数制約を課した最適化問題を指します。線形計画問題(Linear Programming...
はじめに この記事では、機械学習や統計分析において重要な、高次元データの可視化および分析のための次元削減手法について解説します。特に、PCA(主成分分析)、t-SNE、UMAPという代表的な3つの手法に焦点を当て、それぞ...
はじめに 機械学習モデルの説明可能性(Explainable AI, XAI)は、モデルの意思決定プロセスを理解し、ステークホルダーとの信頼関係を構築する上で重要な役割を果たしています。本記事では、代表的な2つの手法であ...
はじめに 近年、機械学習モデルの訓練やデータ分析のために、元データの特徴を保ちつつプライバシーを保護する「合成データ」の活用が進んでいます。しかし、生成されたデータが本当に安全なのか、どのように評価すればよいのでしょうか...
はじめに 近年、グラフニューラルネットワーク(GNN)は、グラフ構造を持つデータの分析において大きな注目を集めています。本記事では、GNNを用いた異常検知の基本的な実装方法について、架空の取引ネットワークデータを例に解説...
はじめに 機械学習ライブラリScikit-learnには、ナイーブベイズ分類器として4つの異なるクラスが用意されています。これらはそれぞれ異なるデータ特性を想定しており、タスクに応じて適切に使い分けることが重要です。しか...
はじめに 3次元データの処理は、コンピュータビジョン、ロボティクス、拡張現実(AR)/仮想現実(VR)といった分野で不可欠な技術です。これらの分野では、現実世界の3次元情報を取得・解析し、それに基づいてシステムを制御した...
はじめに 本記事では、プライバシーを保護しながら実用的な合成データを生成するための手法を、具体的な実践を通じて解説します。特に、合成データ生成ライブラリ synthcity に実装されているADS-GAN(Adversa...
はじめに 本記事では、時系列データ予測における深層学習モデルの代表格であるLSTM (Long Short-Term Memory) とTransformerを比較します。これらのモデルは、ビジネスにおける様々な課題、例...