コンテンツへスキップ
Digital Reactor LLC
Digital Reactor LLC
  • ホーム
  • 技術ブログ
  • 会社情報
  • お問い合わせ
  • ホーム
  • 技術ブログ
  • 会社情報
  • お問い合わせ

カテゴリー: その他

シミュレーテッドアニーリングで解く巡回セールスマン問題

2025年3月4日 by 望月 優輝 / Yuki Mochizuki

はじめに 巡回セールスマン問題(TSP)は、組合せ最適化の代表的な問題です。本記事では、シミュレーテッドアニーリング(SA)を用いてTSPを解く方法を解説します。SAは、金属の焼きなましを模倣したアルゴリズムで、実装が容...

因果推論入門:基本概念とPythonによる実践

2025年3月4日 by 望月 優輝 / Yuki Mochizuki

はじめに 「相関は因果関係を意味しない」という言葉はよく知られていますが、実際に因果関係をどのように推論すればよいのでしょうか。本記事では、因果推論の基本概念をわかりやすく解説し、Pythonを用いた実践的な例を通じて、...

任意の確率密度関数を持つ乱数の生成

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに この記事では、Pythonを用いて任意の確率密度関数に従う乱数を生成する方法について解説します。特に、三角形内部に均一に乱数を配置する問題を例に、具体的なコードと数式を用いて丁寧に説明します。累積分布関数とその...

合成データのプライバシー品質評価指標

2025年11月4日 by 望月 優輝 / Yuki Mochizuki

はじめに 近年、機械学習モデルの訓練やデータ分析のために、元データの特徴を保ちつつプライバシーを保護する「合成データ」の活用が進んでいます。しかし、生成されたデータが本当に安全なのか、どのように評価すればよいのでしょうか...

画像の特徴点検出アルゴリズム比較実験

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 本記事では、画像処理における特徴点検出について解説します。特徴点検出は、画像内で際立った特徴を持つ点を特定する技術であり、画像マッチング、物体認識、画像位置合わせなど、様々な応用分野で重要な役割を果たします。 ...

時系列データの予測:LSTMとTransformerの性能比較

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 本記事では、時系列データ予測における深層学習モデルの代表格であるLSTM (Long Short-Term Memory) とTransformerを比較します。これらのモデルは、ビジネスにおける様々な課題、例...

カメラキャリブレーション – 内部パラメータ・外部パラメータから3次元復元まで

2025年3月7日 by 望月 優輝 / Yuki Mochizuki

はじめに カメラキャリブレーションは、コンピュータビジョンにおいて基礎的かつ重要な技術です。実世界の3次元空間をカメラで撮影し2次元画像として取得する過程で、カメラレンズの歪みやカメラの位置・姿勢などの情報を正確に把握す...

数値積分の実装と比較:台形法からガウス求積法まで

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 数値積分は、関数を解析的に積分することが難しい場合や、データ点からの数値的な積分が必要な場合に役立つ手法です。関数 f(x) の定積分 \int_a^b f(x)dx を近似的に計算するために使用されます。 こ...

反実仮想サンプルの生成と使い方

2025年3月13日 by 望月 優輝 / Yuki Mochizuki

はじめに 機械学習モデルの運用において、「なぜこの予測結果になったのか?」という問いに答えることは、ビジネス上の意思決定やモデルの改善に不可欠です。特に、「もしこの特徴量がこうだったら、予測結果はどう変わるのか?」という...

クロフトンの公式でボリュームデータの表面積を計算する

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに この記事では、CTスキャンなどのボリュームデータから、セグメンテーションされたラベルデータの表面積を正確に計算するための「クロフトンの公式」について解説します。3次元データの表面積計算は、医用画像処理をはじめと...

コピュラの基礎:5つの代表的なコピュラの特徴と可視化

2025年3月19日 by 望月 優輝 / Yuki Mochizuki

はじめに 金融市場では、複数の資産価格が互いにどのように影響しあうかを理解することが重要です。例えば、ある株が上がるとき、別の株も一緒に上がるのか、それとも下がるのか。このような関係性を分析することで、リスク管理や投資戦...

Graph Neural Networksを用いた異常検知入門

2025年2月28日 by 望月 優輝 / Yuki Mochizuki

はじめに 近年、グラフニューラルネットワーク(GNN)は、グラフ構造を持つデータの分析において大きな注目を集めています。本記事では、GNNを用いた異常検知の基本的な実装方法について、架空の取引ネットワークデータを例に解説...

投稿のページ送り

1 2 3 次へ »

  • ホーム
  • 技術ブログ
  • 会社情報
  • お問い合わせ
© 2025 Digital Reactor LLC
Powered by WordPress | Powered by BusinessPress