画像の特徴点検出アルゴリズム比較実験
はじめに 本記事では、画像処理における特徴点検出について解説します。特徴点検出は、画像内で際立った特徴を持つ点を特定する技術であり、画像マッチング、物体認識、画像位置合わせなど、様々な応用分野で重要な役割を果たします。 ...
はじめに 本記事では、画像処理における特徴点検出について解説します。特徴点検出は、画像内で際立った特徴を持つ点を特定する技術であり、画像マッチング、物体認識、画像位置合わせなど、様々な応用分野で重要な役割を果たします。 ...
はじめに 最適化問題は、科学、工学、経済学など、さまざまな分野で重要な役割を果たしています。多くの最適化問題は複雑であり、局所的最適解に陥りやすいという課題があります。本記事では、代表的な2つの最適化アルゴリズム、勾配降...
はじめに 金融市場では、複数の資産価格が互いにどのように影響しあうかを理解することが重要です。例えば、ある株が上がるとき、別の株も一緒に上がるのか、それとも下がるのか。このような関係性を分析することで、リスク管理や投資戦...
はじめに この記事では、あるコスト関数を最小化するための3次元回転の最適化について、リー代数の考え方を用いて理論的な背景を解説し、Pythonで実装を行います。詳細については、書籍「3次元回転(金谷健一著)」が参考になり...
はじめに この記事では、Pythonを用いて任意の確率密度関数に従う乱数を生成する方法について解説します。特に、三角形内部に均一に乱数を配置する問題を例に、具体的なコードと数式を用いて丁寧に説明します。累積分布関数とその...
はじめに モンテカルロ法は、確率的なサンプリングを用いて数値積分や期待値計算を行う強力な手法です。しかし、次元が増加するにつれて必要なサンプル数が指数関数的に増加する「次元の呪い」という問題に直面します。この記事では、次...
はじめに この記事では、球面上に均一に点を配置する2つの方法について解説します。具体的には、乱数を用いる方法と、黄金比を用いる方法を紹介します。これらの手法は、シミュレーションの初期値設定や3Dグラフィックスにおけるオブ...
はじめに 本記事では、時系列データ予測における深層学習モデルの代表格であるLSTM (Long Short-Term Memory) とTransformerを比較します。これらのモデルは、ビジネスにおける様々な課題、例...
はじめに カメラキャリブレーションは、コンピュータビジョンにおいて基礎的かつ重要な技術です。実世界の3次元空間をカメラで撮影し2次元画像として取得する過程で、カメラレンズの歪みやカメラの位置・姿勢などの情報を正確に把握す...
はじめに この記事では、機械学習や統計分析において重要な、高次元データの可視化および分析のための次元削減手法について解説します。特に、PCA(主成分分析)、t-SNE、UMAPという代表的な3つの手法に焦点を当て、それぞ...
はじめに 近年、グラフニューラルネットワーク(GNN)は、グラフ構造を持つデータの分析において大きな注目を集めています。本記事では、GNNを用いた異常検知の基本的な実装方法について、架空の取引ネットワークデータを例に解説...
はじめに この記事では、CTスキャンなどのボリュームデータから、セグメンテーションされたラベルデータの表面積を正確に計算するための「クロフトンの公式」について解説します。3次元データの表面積計算は、医用画像処理をはじめと...